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Abstract

A novel approach to inference for a specific region of the predictive distribution is introduced.

An important domain of application is accurate prediction of financial risk measures, where the area

of interest is the left tail of the predictive density of logreturns. Our proposed approach originates

from the Bayesian approach to parameter estimation and time series forecasting, however it is robust

in the sense that it provides a more accurate estimation of the predictive density in the region of

interest in case of misspecification. The first main contribution of the paper is the novel concept

of the Partially Censored Posterior (PCP), where the set of model parameters is partitioned into

two subsets: for the first subset of parameters we consider the standard marginal posterior, for the

second subset of parameters (that are particularly related to the region of interest) we consider the

conditional censored posterior. The censoring means that observations outside the region of interest

are censored: for those observations only the probability of being outside the region of interest matters.

This quasi-Bayesian approach yields more precise parameter estimation than a fully censored posterior

for all parameters, and has more focus on the region of interest than a standard Bayesian approach.

The second main contribution is that we introduce two novel methods for computationally efficient

simulation: Conditional MitISEM, a Markov chain Monte Carlo method to simulate model parameters

from the Partially Censored Posterior, and PCP-QERMit, an Importance Sampling method that is

introduced to further decrease the numerical standard errors of the Value-at-Risk and Expected

Shortfall estimators. The third main contribution is that we consider the effect of using a time-

varying boundary of the region of interest, which may provide more information about the left tail

of the distribution of the standardized innovations. Extensive simulation and empirical studies show

the ability of the introduced method to outperform standard approaches.
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rior; misspecification; density forecasting; Markov chain Monte Carlo; importance sampling; mixture
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1 Introduction

The issue of accurate estimation of the left tail of the predictive distribution of returns is crucial from the

risk management perspective and is thus commonly investigated by both academics and practitioners.

One of the main reasons for its importance is that it is used to obtain measures of downside risk for

investments such as Value-at-Risk (VaR) and Expected Shortfall (ES), cf. McNeil and Frey (2000) and

McNeil et al. (2015). The task of tail prediction is a special case of density forecasting where the focus

is on a specific subset of the domain of the predictive distribution. Density forecasting in general has

been rapidly growing in econometrics, finance and macroeconomics due to increased understanding of the

limited informativeness of point forecasts, cf. Diks et al. (2011). In contrast to these, density forecasts

provide a full insight into the forecast uncertainty. For a survey of the evolution of density forecasting in

economics, see Aastveit et al. (2019).

A natural framework, therefore, for analysing density forecasts is the Bayesian framework, as it treats

all unobserved quantities as parameters to be estimated; see e.g. Geweke and Amisano (2010) for a

comparison and evaluation of Bayesian predictive distributions. This includes the predictions for the

observation process. Importantly, the Bayesian approach incorporates the parameter uncertainty into

analysis and facilitates dealing with model uncertainty, usually via Bayesian Model Averaging. However,

the issue of Bayesian model misspecification still seems to be an open question.1 A formal approach to this

problem is provided by Kleijn and van der Vaart (2006), who show (under stringent conditions) that given

an incorrectly specified model, the posterior concentrates ‘close’ to the points in the support of the prior

that minimise the Kullback-Leibler divergence with respect to the true data generating process (DGP).

This result can be seen as the Bayesian counterpart of the MLE being consistent for the pseudo-true

values in frequentist statistics. Nevertheless, differently than the asymptotic distribution of the MLE,

the estimated posterior variance is incorrect in case of misspecification (Kleijn and van der Vaart, 2006).

Müller (2013) shows that one can rescale the posterior so that credible sets have the correct coverage.

As a practical solution to the problem, Geweke and Amisano (2012) apply the so-called model pooling,

which relaxes the key assumption behind model averaging that the true model is in the set of models

under consideration.

In the context of tail forecasting, the crucial question is: what if “close” is not close enough? From

the perspective of accurate tail prediction obtaining estimates being just “close” to their real values

is likely to lead to incorrect risk measures and hence to poor managerial decisions in cases where the

misspecification is severe. To improve inference on a particular region of the predictive density, Gatarek

et al. (2013) introduce the Censored Posterior (CP) for estimation and the censored predictive likelihood

for model combination using Model Averaging. A concept underlying their approach is the censored

likelihood scoring function of Diks et al. (2011), an adaptation (with specific focus on the left tail) of the

popular logarithmic scoring rule, cf. Hall and Mitchell (2007) and Amisano and Giacomini (2007). Diks

et al. (2011) use the censored likelihood scoring function only for comparing density forecasts in tails, not

for estimation. The censoring means that observations outside the region of interest are censored: for

those observations only the probability of being outside the region of interest matters. However, as we

discuss in the later part of this paper, for densely parametrised models applied in practice the Censored

Posterior approach is likely to lose too much information.

To overcome these shortcomings the first main contribution of this paper is the novel concept of the

Partially Censored Posterior (PCP), where the set of model parameters is partitioned into two subsets:

the first, for which we consider the standard marginal posterior, and the second, for which we consider a

conditional censored posterior. In the second subset we choose parameters that are expected to especially

1At the time of writing there is an active, ongoing debate in the Bayesian community about the issue of Bayesian model
misspecification. Interestingly, it seems that there is no common ground on it (yet)! Cf. Robert (2017) and Cross Validated
(2017).
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benefit from censoring (due to their particular relationship with the tail of the predictive distribution).

This quasi-Bayesian approach leads to more precise parameter estimation than a fully censored posterior

for all parameters, and has more focus on the region of interest than the standard Bayesian approach

(that is, with no censoring).

The second main contribution is that we introduce two novel simulation methods. The first method

is a Markov chain Monte Carlo (MCMC) method to simulate model parameters from the Partially

Censored Posterior. Here we extend the Mixture of t by Importance Sampling weighted Expectation

Maximization (MitISEM) algorithm of Hoogerheide et al. (2012) to propose the Conditional MitISEM

approach, where we approximate the joint censored posterior with a mixture of Student’s t distributions

and use the resulting conditional mixture of Student’s t distributions as a candidate distribution for

the conditional censored posterior. The high quality of the (conditional) candidate distributions leads

to a computationally efficient MCMC method. The second method is an Importance Sampling method

that is introduced to further decrease the numerical standard errors of the VaR and ES estimators.

Here we adapt the Quick Evaluation of Risk using Mixture of t approximations (QERMit) algorithm of

Hoogerheide and van Dijk (2010) to propose the PCP-QERMit method, where an adaptation is required

since we do not have a closed-form formula for the partially censored posterior density kernel.

The third main contribution is that we consider the effect of using a time-varying boundary of the region

of interest. To the best of our knowledge, the literature on the censored likelihood scoring rule, the

censored likelihood and the censored posterior has been limited to a time-constant threshold defining

the left tail. However, a constant threshold might be suboptimal when we focus on the left tail of the

conditional distribution (given past observations). Even if the interest is in the unconditional left tail,

then the time-varying threshold may be still more advantageous than the time-constant one. This is

simply because the time-varying threshold allows us to obtain more information about the left tail of the

distribution of the standardized innovations compared to the time-constant one.

The outline of this paper is as follows. In Section 2 we consider the risk measure concepts and discuss

the censored posterior. Moreover, we introduce our novel concept of the Partially Censored Posterior

and the novel simulation methods of Conditional MitISEM and PCP-QERMit. As an other extension of

the existing literature on censored likelihood based methods, in Section 3 we introduce a time-varying

threshold for censoring. In Section 4 we provide an empirical application using an AGARCH model

with skewed-t innovations, a GAS-skewed-t model and GAS-t model for daily IBM logreturns. Section 5

concludes.

2 Censored posterior and partially censored posterior

Let {yt}t∈Z be a time series of daily logreturns on a financial asset price, with y1:T = {y1, . . . , yT }
denoting the (in-sample) observed data. We denote ys:r = {ys, ys+1, . . . , yr−1, yr} for s ≤ r. We assume

that {yt}t∈Z is subject to a dynamic stationary process parametrised by θ, on which we put a prior p(θ).

We are interested in the conditional predictive density of yT+1:T+H , given the observed series y1:T . In

particular, we are interested in the standard risk measure given by the 100(1 − α)% VaR (in the sense

of McNeil and Frey, 2000), the 100α% quantile of the predictive distribution of
∑T+H
t=T+1 yt given y1:T .

We also consider the ES as an alternative risk measure, due to its advantageous properties compared to

the VaR, mainly sub-additivity (which makes ES a coherent risk measure in the sense of Artzner et al.,

1999):

100(1− α)% ES = E

[
T+H∑
t=T+1

yt

∣∣∣∣∣
T+H∑
t=T+1

yt < 100(1− α)% VaR

]
.
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The regular (uncensored) likelihood is given by the standard formula

p(y1:T |θ) =

T∏
t=1

p(yt|y1:t−1, θ)

and the posterior predictive density is

p(yT+1:T+H |y1:T ) =

∫
p(yT+1:T+H |y1:T , θ)p(θ|y1:T )dθ.

Given the data y1:T and a set of parameter draws {θ(i)}Mi=1 from the posterior, the posterior predictive

density can be estimated as:

p(yT+1:T+H |y1:T ) ≈ 1

M

M∑
i=1

p(yT+1:T+H |y1:T , θ
(i)). (2.1)

2.1 Censored likelihood and censored posterior

As mentioned above, we are interested in a particular region of the predictive distribution, i.e. the left tail.

For generality let us denote the region of interest by A = {A1, . . . , AT }, where At = {yt|yt < Ct} with

threshold Ct potentially time-varying. For assessing the performance of forecast methods, i.e. comparing

accuracy of density forecasts for such a region, Diks et al. (2011) introduce the censored likelihood (CSL)

scoring function, which Gatarek et al. (2013) employ to define the censored likelihood (CL), where the

CL is obtained by taking the exponential transformation of the CSL. The CL is given by

pcl(y1:T |θ) =

T∏
t=1

pcl(yt|θ, y1:t−1), (2.2)

where pcl(yt|θ, y1:t−1) is the conditional density of the mixed continuous-discrete distribution for the

censored variable ỹt

ỹt =

yt, if yt ∈ At,

Rt, if yt ∈ ACt .
(2.3)

Definition (2.3) means that the censored variable ỹt is equal to the original one in the region of interest,

while everywhere outside it it is equal to the value Rt ∈ ACt . In consequence, the distribution of ỹt is

mixed: continuous (in At) and discrete (in Rt). We have:

pcl(yt|y1:t−1θ) = [p(yt|y1:t−1, θ)]
I{yt∈At} ×

[
P(yt ∈ ACt |y1:t−1, θ)

]I{yt∈ACt }
= [p(yt|y1:t−1, θ)]

I{yt∈At} ×

[∫
ACt

p(x|y1:t−1, θ)dx

]I{yt∈ACt }
. (2.4)

Differently than with a likelihood of a censored dataset where all yt ∈ ACt are censored and their exact

values are completely ignored, with the censored likelihood the exact value of yt ∈ ACt still plays a role in

conditioning in subsequent periods, in the sense that we condition on the uncensored past observations

yt−1, yt−2, . . .. Only in the case of i.i.d. observations when p(yt|y1:t−1, θ) = p(yt|θ) both approaches would

be equivalent. We do this for two reasons. First, the purpose is to improve the left-tail prediction based

on the actually observed past observations. By censoring the past observations yt−1, yt−2, . . . we would

lose valuable information. Second, it would typically be much more difficult to compute the likelihood for
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censored data (where one would also condition on censored past observations). Therefore, the (Partially)

Censored Posterior is a quasi -Bayesian concept.

Gatarek et al. (2013) use the CL to define the censored posterior (CP) density as

pcp(θ|y1:T ) ∝ p(θ)pcl(y1:T |θ), (2.5)

where p(θ) is the prior density kernel on the model parameters. That is, the CP does not result from Bayes’

rule, that the posterior density is proportional to the product of prior density and likelihood; the CP is

proportional to the product of prior density and censored likelihood. Typically, the censored posterior

density pcp(θ|y1:T ) is a proper density in the same cases (i.e., under the same choices of the prior p(θ))

where the regular posterior p(θ|y1:T ) is a proper density (i.e., with finite integral
∫
p(θ)pcl(y1:T |θ)dθ <∞),

as long as there are enough observations yt ∈ At that are not censored. Note that Berkowitz (2001) uses a

censored approach to Value-at-Risk (VaR) testing and has a similar focus on large losses. In Appendix A

we illustrate the advantages and disadvantages of estimation based on the censored posterior in a simple

simulation study in which we consider three data generating processes (DGPs), where we assume a split

normal distribution, a skewed-t distribution or a mixture of two normal distributions for i.i.d. yt.

2.2 Partially Censored Posterior

Not all of the parameters are typically expected to particularly relate to the region of interest of the

predictive distribution. For this reason we propose the Partially Censored Posterior, where only a selected

subset of parameters is estimated with the conditional CP, while for the remaining parameters we consider

the regular posterior.

2.2.1 Definition and MCMC algorithm Conditional MitISEM

Below we formally define the Partially Censored Posterior (PCP) and devise an MCMC algorithm to

simulate from it. The PCP is a novel concept based on combining the standard posterior for the “common”

parameters and the Censored Posterior of Gatarek et al. (2013) for the parameters that particularly affect

the properties of the region of interest. Consider a vector of model parameters θ and suppose that some

subset of parameters, call it θ2, is particularly related to the (left) tail of the predictive distribution so

that it may benefit from censoring, while the other parameters, in the subset θ1, would not benefit from

censoring, or could even be adversely affected by censoring. In other words, we consider a partitioning

θ = (θ′1, θ
′
2)′. How this partitioning is done depends on the model under consideration. We propose that a

sensible way is to in collect θ2 the parameters determining the shape of the conditional distribution of yt

(e.g., the degrees of freedom parameter of a Student’s t distribution, the shape parameter of a Generalized

Error Distribution), but also parameters for the (unconditional) mean and variance. Next, we propose

to collect in θ1 the other parameters, such as the coefficients determining the dynamic behaviour of the

conditional mean/variance in ARMA/GARCH models.

Definition and algorithm We define the PCP as

ppcp(θ1, θ2|y) = p(θ1|y)pcp(θ2|θ1, y),

where p(θ1|y) is the standard marginal posterior of θ1 and pcp(θ2|θ1, y) is the conditional censored pos-

terior of θ2 given θ1. For a given value of θ1, a kernel of the conditional censored posterior density of θ2
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given θ1 is given by:

pcp(θ2|θ1, y) =
pcp(θ1, θ2|y)

pcp(θ1|y)
∝ pcp(θ1, θ2|y) ∝ p(θ1, θ2)pcl(y|θ1, θ2),

with prior density kernel p(θ1, θ2) and censored likelihood pcl(y|θ1, θ2) in (2.2). We propose the following

MCMC procedure to simulate from the PCP, the Conditional MitISEM method:

1. Simulate (θ
(i)
1 , θ

(i)
2 ), i = 1, . . . ,M, from posterior p(θ1, θ2|y) using the independence chain Metropolis-

Hastings (IC-MH) algorithm, using as a candidate density a mixture of Student’s t densities ob-

tained by applying the Mixture of t by Importance Sampling weighted Expectation Maximization

(MitISEM) algorithm of Hoogerheide et al. (2012) to the posterior density kernel p(θ1, θ2|y).

2. Keep θ
(i)
1 and ignore θ

(i)
2 , i = 1, . . . ,M .

3. For each θ
(i)
1 simulate θ

(i,j)
2 , j = 1, . . . , N, from the conditional censored posterior pcp(θ2|θ(i)

1 , y):

3.1. Construct joint candidate density qmit(θ1, θ2), a mixture of Student’s t densities obtained by

applying the MitISEM algorithm to the censored posterior density kernel pcp(θ1, θ2|y);

3.2. Use conditional candidate density qcmit(θ2|θ1 = θ
(i)
1 ), the mixture of Student’s t densities

implied by the joint candidate density qmit(θ1, θ2), as a candidate density to simulate θ
(i,j)
2

from pcp(θ2|θ(i)
1 , y) in a run of the independence chain MH algorithm.

The use of MitISEM in step 3.1. implies that this step is efficiently performed with a relatively high

acceptance rate in the IC-MH algorithm. To perform the conditional sampling in step 3.2. we use the

fact that the conditional distribution of a joint mixture of Student’s t distributions is itself a mixture of

Student’s t distributions and we provide its details in Appendix B.

This implies that if we have obtained qmit(θ1, θ2), a mixture of Student’s t densities that approximates

the joint censored posterior pcp(θ1, θ2|y), then we can use the M implied conditional mixtures of Student’s

t densities qcmit(θ2|θ1 = θ
(i)
1 ), (i = 1, . . . ,M), as candidate densities for pcp(θ2|θ(i)

1 , y) (i = 1, . . . ,M).

Hence, we only need one MitISEM approximation to obtain all the conditional candidate densities. In step

3.2. we do need a separate run of the IC-MH algorithm to simulate θ
(i,j)
2 for each given θ

(i)
1 (i = 1, . . . ,M).

However, given the typically high quality of the conditional MitISEM candidate density, a small burn-in

will typically suffice, after which we can choose to use N = 1 draw θ
(i,j)
2 . Note that step 3.2. can be

performed in a parallel fashion. As an alternative, to further speed up the simulation method with only

a small loss of precision, we can also choose to use N ≥ 2 draws θ
(i,j)
2 (j = 1, . . . , N) from each run, for

example N = 10, combined with a thinning approach for θ
(i)
1 , where only every Nth draw of θ

(i)
1 is used.

2.2.2 Variance reduction with PCP-QERMit

Putting much effort in obtaining more accurate estimates of risk measures such as VaR and ES, using the

specific left-tail focus of the PCP, might be wasteful if counteracted by large simulation noise affecting

these estimates (i.e. high numerical standard errors). Hence, we aim to increase numerical efficiency

of the proposed PCP method. For this purpose, we adapt the Quick Evaluation of Risk using Mixture

of t approximations (QERMit) algorithm of Hoogerheide and van Dijk (2010) for efficient VaR and ES

estimation.

QERMit is an importance sampling (IS) based method in which an increase in efficiency is obtained

by oversampling “high-loss” scenarios and assigning them lower importance weights. The theoretical

result of Geweke (1989) prescribes that the optimal importance density (in the sense of minimising the

numerical standard error for a given number of draws) for Bayesian estimation of a probability of a given
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set (here, the left tail of the predictive distribution) is composed of two equally weighted components,

one for the high-loss scenarios (corresponding to the tail) and one for remaining realisations of returns.

I.e. there is a 50%-50% division between “high-loss” draws and other draws. Such an approach allows

for a substantial increase in efficiency compared to the so-called direct approach for VaR evaluation, in

which predictions are obtained by simply sampling posterior draws of model parameters and combining

these with the future innovations from the model to generate future paths of returns. One then simply

computes the VaR estimate as the required percentile of the sorted (in ascending order) simulated returns.

The QERMit method of Hoogerheide and van Dijk (2010) works for the regular (uncensored) Bayesian

approach, i.e. based on the regular posterior and the regular predictive distribution. This method does

require a closed-form formula for the target density, which is used as the numerator of the IS weights in

the final step where the draws from the importance distribution are used to estimate the VaR. In case of

the PCP we do not have a closed-form formula for the target density ppcp(θ1, θ2|y) = p(θ1|y)pcp(θ2|θ1, y),

since we do not have closed-form formulas for the density kernels p(θ1|y) and pcp(θ2|θ1, y).

New IS algorithm To overcome this problem, we propose a new IS-based method to reduce the

variance of the H-step-ahead VaR estimator obtained with the PCP. Given the draws of (θ
(i)
1 , θ

(i)
2 ),

i = 1, . . . ,M , from the PCP, we aim to sample the future innovations in the model εT+1:T+H conditionally

on (θ
(i)
1 , θ

(i)
2 ) such that the resulting joint draws (θ

(i)
1 , θ

(i)
2 , εT+1:T+H) will lead to “high losses”. This

relates to the idea of oversampling the negative scenarios underlying the QERMit approach of Hoogerheide

and van Dijk (2010), however we do not require to evaluate the target density kernel of the PCP. The

proposed PCP-QERMit algorithm proceeds as follows.

1. Preliminary steps

1.1. Obtain a set of draws from the PCP, (θ
(i)
1 , θ

(i)
2 ), i = 1, . . . ,M , using the Conditional MitISEM

algorithm of the previous subsection.

1.2. Simulate future innovations ε
(i)
T+1:T+H from their model distribution.

1.3. Calculate the corresponding future returns y
(i)
T+1:T+H .

1.4. Consider those joint draws (θ
(i)
1 , θ

(i)
2 , ε

(i)
T+1:T+H) that have led to e.g. the 10% lowest returns∑T+H

t=T+1 y
(i)
t (the “high loss draws”).

2. High loss draws

2.1. Use the “high loss draws” from step 1.4. to approximate the joint PCP “high-loss” density of

θ and εT+1:T+H with a mixture of Student’s t densities qmit(θ1, θ2, εT+1:T+H) by applying the

MitISEM algorithm to the draws (θ
(i)
1 , θ

(i)
2 , ε

(i)
T+1:T+H).

2.2. Sample ε̃
(i)
T+1:T+H |θ

(i)
1 , θ

(i)
2 , i = 1, . . . ,M , from its conditional importance density (aimed at

high losses) qcmit(εT+1:T+H |θ(i)
1 , θ

(i)
2 ), the conditional mixture of Student’s t distributions im-

plied by qmit(θ1, θ2, εT+1:T+H) (cf. Appendix B).

3. IS estimation of the VaR (or ES)

3.1. Compute the importance weights of the draws (θ
(i)
1 , θ

(i)
2 , ε̃

(i)
T+1:T+H), i = 1, . . . ,M , as

w(i) =
p(ε̃

(i)
T+1:T+H |θ

(i)
1 , θ

(i)
2 )

q(ε̃
(i)
T+1:T+H |θ

(i)
1 , θ

(i)
2 )

,

where the numerator p(ε
(i)
T+1:T+H |θ

(i)
1 , θ

(i)
2 ) is simply the density of the innovations in the model

(and where the kernel of the partially censored posterior density ppcp(θ1, θ2|y) = p(θ1|y)pcp(θ2|θ1, y)

drops out of the importance weight, as it appears in both numerator and denominator).
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3.2. Compute the future returns y
(i)
T+1:T+H corresponding to the joint draws (θ

(i)
1 , θ

(i)
2 , ε̃

(i)
T+1:T+H),

i = 1, . . . ,M , and the resulting total return over H periods
∑T+H
t=T+1 yt.

3.3. Estimate the 100(1− α)%VaR as the value C such that

P̂

(
T+H∑
t=T+1

yt < C

)
= α,

with

P̂

(
T+H∑
t=T+1

yt < C

)
=

1

M

M∑
i=1

w(i)I

(
T+H∑
t=T+1

y
(i)
t < C

)
, (2.6)

where I(·) denotes the indicator function.

For the ES the method continues in a similar fashion. Step 2.2. is crucial in the above algorithm, as it

allows us to “guide” the future disturbances to the “high-loss” region without the necessity of evaluating

the kernel of the partially censored posterior density ppcp(θ1, θ2|y) = p(θ1|y)pcp(θ2|θ1, y). Note that we do

not need to use the 50%-50% division between “high-loss” draws and other draws, which was the case in

the regular QERMit method for Bayesian VaR/ES prediction, but we can fully focus on the high losses.

Such a concentration of all the mass of the importance density in the “high-loss region” is valid since we

do not use the self-normalised IS weights w(i)/
∑M
j=1 w

(j). Normalising of the IS weights is necessary in

Bayesian IS estimation whenever only the posterior kernel is available. Since we have the exact target

and candidate densities of the innovations εT+1:T+H , we use the unscaled IS weights w(i) that only occur

in (2.6) in the product w(i)I
(∑T+H

t=T+1 y
(i)
t < C

)
, so that the weights w(i) only matter for “high-loss”

draws for which the indicator I
(∑T+H

t=T+1 y
(i)
t < C

)
is equal to 1.

Illustration To illustrate the benefits of the PCP-QERMit method we consider a simple example

involving the AR(1) model. We consider the true DGP of the form

yt = µ(1− ρ) + ρyt−1 + εt,

with split normally distributed innovations εt ∼ SN (δ, τ2
1 , τ

2
2 ) with δ = τ2−τ1√

2π
so that E(εt) = 0, see

Appendix A for a brief discussion of this split normal distribution. We simulate T = 1000 observations

from the model with µ = 0, τ1 = 1, τ2 = 2 and ρ = 0.8.

We estimate the AR(1) model with normally distributed innovations εt ∼ N (0, σ2). We specify the usual

non-informative prior p(µ, σ, ρ) ∝ 1
σ (for σ > 0, −1 < ρ < 1).

We estimate the 1-step-ahead 99.5%, 99% and 95% VaR and ES (and compute the numerical standard

error from 50 MC replications) using the PCP where θ1 = {ρ} stems from the regular marginal posterior,

whereas θ2 = {µ, σ} stems from the conditional censored posterior. Both the PCP direct approach

(Conditional MitISEM) and the PCP-QERMit method make use of 10000 draws. (The PCP has a time-

constant threshold Ct given by the 10% quantile of the in-sample data.) Table 1 shows the results, where

the smaller numerical standard errors stress the usefulness of the PCP-QERMit method for obtaining

more accurate estimates of both VaR and ES.

2.3 Simulation study: AR(1) model

Below, we compare the quality of the left-tail density forecasts from the PCP with the regular posterior

and the full CP. We consider the same estimated model and the same DGP as in the previous subsection:

an estimated AR(1) model with normally distributed innovations for data from an AR(1) model with

split normally distributed innovations.
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Risk measure PCP direct approach PCP-QERMit
99.5% VaR -4.3557 -4.3379

[0.1050] [0.0500]
99.5% ES -4.9877 -4.9786

[0.1328] [0.0830]

99% VaR -3.8461 -3.8308
[0.0813] [0.0340]

99% ES -4.5311 -4.5183
[0.1003] [0.0587]

95% VaR -2.4682 -2.4675
[0.0429] [0.0100]

95% ES -3.3130 -3.3055
[0.0524] [0.0228]

Table 1: Estimated AR(1) model with normally distributed innovations εt ∼ N (0, σ2) for T = 1000 observations from DGP of
AR(1) model with split normally distributed innovations εt ∼ SN (δ = 1√

2π
, τ1 = 1, τ2 = 2). Results of estimated 1-step-ahead

99.5%, 99% and 95% VaR and ES (and numerical standard error from 50 MC replications within brackets). The PCP direct
approach (Conditional MitISEM) and PCP-QERMit method make use of 10000 draws. (The PCP has a time-constant threshold
Ct given by the 10% quantile of the in-sample data.)

We keep µ = 0, ρ = 0.8 and τ1 = 1 in the DGP. We do vary the level of misspecification by considering

the correctly specified case of τ2 = 1 and the misspecified cases of τ2 = 1.5 and τ2 = 2. Further, we

analyse the effect of the sample size T by considering estimation windows of size T = 100, 200, 500 and

1000.

For each DGP we consider 1000 out-of-sample observations for 20 simulated datasets, where for each

observation we compute the (one-step-ahead) censored likelihood (CSL) score function of Diks et al.

(2011) (with time-constant threshold Ct = C given by the 5% quantile of the returns), given by

Scsl(p(yT+1|y1:T )) = I(yT+1 < CT+1) log p(yT+1|y1:T )

+ I(yT+1 ≥ CT+1) log

(∫ ∞
CT+1

p(s|y1:T )ds

)
. (2.7)

For each simulated dataset we compute the Diebold-Mariano test statistic (with Newey-West standard

error; see Diebold and Mariano, 1995), where the loss differential is the difference in the censored likelihood

score function. We use the average of the 20 Diebold-Mariano test statistics to test the null hypothesis

of equal left-tail density prediction, where the critical values in a two-sided test at 5% significance are

simply given by ± 1.96√
20
≈ ±0.44 (as the 20 simulated datasets are independent, and the test statistics have

approximately the standard normal distribution under the null). The standard Bayesian concept of the

Bayes factor is not suitable in our situation. First, if we would use the Bayes factor for all uncensored

data, then the (partially) censored posterior would be expected to perform substantially worse than the

standard posterior, since the (partially) censored posterior only aims to provide a good prediction of

the predictive distribution in the region of interest, i.e. the left tail. Outside the region of interest the

standard posterior is expected to provide much better density forecasts. Second, the Bayes factor for the

censored data (conditioning on past censored observations) would be hard to evaluate and would also

not reflect the purpose of the (partially) censored posterior to improve the left-tail prediction based on

all information provided by the actually observed past observations.

Table 2 shows the results. We observe the following findings. First, as expected, in the case without

misspecification (τ2 = 1), the regular posterior performs better than the PCP or CP. In this case it is

obviously optimal to use all observations in an uncensored way. Moreover, in this case the PCP performs

better than the CP, as “the less censoring, the better”. Second, in the cases of misspecification and a

large estimation window (T = 500 or T = 1000) the PCP and CP outperform the regular posterior. The

more severe the misspecification, the smaller the sample size T for which censoring becomes beneficial.
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Third, in the case of misspecification and a small estimation window (T = 100 or T = 200) the regular

posterior outperforms the CP and the PCP, caused by the loss of information due to censoring. Fourth,

the PCP is never significantly outperformed by the CP. In the case of misspecification and a large esti-

mation window, we do not reject the equality of their performance. In the cases of no misspecification

and/or a small estimation window the PCP significantly outperforms the CP.

In order to analyse the robustness of our conclusions with respect to the choice of the quality measure

and the distribution of the errors in the AR(1) model, we perform a similar study based on the 99.5%,

99% and 95% VaR (instead of the censored likelihood score function), where we simulate T = 100, 1000 or

10000 draws yt from the AR(1) model where the errors have the skewed-t distribution SKT (0, 1, ν = 5, λ)

of Hansen (1994), see Appendix A for a brief discussion of this skewed-t distribution. Table 3 shows the

results. The conclusions are similar to those for the censored likelihood score function in the AR(1) model

with the split-normal errors. The PCP outperforms the regular posterior if the misspecification is large

enough (i.e., if the asymmetry parameter λ in the DGP is far enough from 0), if the VaR of interest lies

deep enough in the left tail and if the number of observations T is large enough.

T τ2 = 1 τ2 = 1.5 τ2 = 2

100 7.379*** 5.868*** 2.137***

200 4.315*** 1.097*** -0.872***

500 5.261*** -0.367 -1.221***

1000 2.026*** -0.959*** -1.648***

(a) Posterior vs PCP.

T τ2 = 1 τ2 = 1.5 τ2 = 2

100 4.471*** 3.957*** 1.894***

200 2.987*** 1.458*** -0.739***

500 1.923*** 0.065 -1.370***

1000 1.084*** -0.778*** -1.810***

(b) Posterior vs CP.

T τ2 = 1 τ2 = 1.5 τ2 = 2

100 -1.561*** -2.157*** -2.312***

200 -2.041*** -0.924*** -0.419*

500 -1.410*** -0.135 0.320

1000 -0.857*** 0.031 -0.157

(c) CP vs PCP.

Table 2: Estimated AR(1) model with normally distributed innovations εt ∼ N (0, σ2) for T = 100, 200, 500, 1000 observations

from DGP of AR(1) model with split normally distributed innovations εt ∼ SN (δ =
τ2−τ1√

2π
, τ1 = 1, τ2). We consider the correctly

specified case of τ2 = 1 and the misspecified cases of τ2 = 1.5 and τ2 = 2. The tables show the average of 20 Diebold-Mariano
test statistics (with Newey-West standard errors) for 20 simulated data sets. The loss differential (computed for H = 1000 out-of-
sample observations for each simulated dataset) is the difference in the censored likelihood score function (2.7) with time-constant
threshold Ct = C given by the 5% quantile of the returns. Positive values indicate superior left-tail forecast performance of the first
approach; negative values indicate superior left-tail forecast performance of the second approach. The significance (in a two-sided
test) is indicated by * for p ≤ 0.1, ** for p ≤ 0.05 and *** for p ≤ 0.01. Bold numbers indicate a significantly better performance
of our proposed PCP approach (at 5% significance level).
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3 Time-varying threshold

Notice that the region of interest At used to define the censored variable in (2.3) is potentially time-

varying. However, to the best of our knowledge, the literature on the censored likelihood scoring function,

the censored likelihood and the censored posterior has been limited to a time-constant threshold. Gatarek

et al. (2013) set the “censoring boundary” to the 20% or 30% percentile of the estimation window,

leaving the topic of a time-varying threshold for further research. Opschoor et al. (2016) focus on the

15% percentile of a two-piece Normal distribution or a certain percentile (15% or 25%) of the empirical

distribution of the data. Diks et al. (2011) investigate the impact of a time-varying threshold, which,

however, is understood slightly differently. These authors evaluate the forecasting methods using a rolling

window scheme and set the time-varying constant equal to the empirical quantile of the observations in

the relevant estimation window. Obviously, a time-constant threshold implied by a certain empirical

percentile differs between different data windows.

However, a constant threshold might be suboptimal when we focus on the left tail of the conditional

distribution (given past observations). Even if the interest is in the unconditional left tail, so only in

the most negative returns, then the time-varying threshold might be still more advantageous than the

time-constant one. This is simply because the time-varying threshold provides more information about

the left tail of the distribution of the standardized innovations compared to the time-constant one.

Therefore, we consider the time-varying threshold Ct given by a certain percentile of the estimated

conditional distribution of yt (given the past) that is implied by the Maximum Likelihood Estimate

(MLE) θ̂ML. Note that the threshold Ct must be equal for all draws θ(i) (i = 1, . . . ,M) from the

(partially) censored posterior, as the threshold Ct affects the (partially) censored posterior. Making Ct

depend on draws θ(i) (i = 1, . . . ,M) from the (partially) censored posterior would lead to a circular

reasoning. Hence, the MLE θ̂ML provides a usable solution. As an alternative, one could use the regular

posterior mean of θ.

The above discussion relates to estimation based on a (partially) censored posterior. However, note that

the choice of a threshold CT+1 can also be important for the assessment of the quality of the left-tail

prediction. Indeed, (2.7) can be computed with time-varying CT+1. In our empirical study in Section 4

we consider, next to time-constant thresholds for the CSL rule (the 0.5%, 1% and 5% percentiles of the

in-sample data), time-varying thresholds given by the 0.5%, 1% and 5% percentiles of the MLE-implied

conditional distribution.

4 Empirical application

In this section we compare the left-tail forecasting performance for the regular posterior, the censored

posterior and the partially censored posterior using empirical data. We consider daily logreturns of the

IBM stock, from the 4th January 2007 to the 28th December 2018 (3019 observations, see Figure 4.1).

We consider three models. The first model is the AGARCH(1,1) model, the Asymmetric GARCH model

of Engle and Ng (1993), with innovations following the skewed-t distribution of Hansen (1994). This

model accounts for the skewness and the leverage effect often observed for stock returns. We adopt the

following specification

yt = µ1 +
√
htεt,

εt ∼ SKT (0, 1, ν, λ),

ht = ω(1− α− β) + α(yt−1 − µ2)2 + βht−1,
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Figure 4.1: The daily logreturns of the IBM stock from the 4th January 2007 to the 28th December 2018.

where SKT (0, 1, ν, λ), denotes the skewed-t distribution of Hansen (1994) with zero mean, unit variance,

ν degrees of freedom and skewness parameter λ. We put flat priors on variance dynamics parameters to

impose its positivity and stationarity: ω > 0, α ∈ (0, 1), β ∈ (0, 1) with α + β < 1. For ν − 2 we use an

uninformative yet proper exponential prior (with prior mean 100) and for λ ∼ U(−1, 1).

Creal et al. (2013) propose the Generalised Autoregressive Score (GAS) model in which a time-varying

parameter is updated with the scaled score of a new observation’s contribution to the loglikelihood

function. Our second and third model are GAS models with skewed-t and Student’s t innovations.

Neither of these GAS models accounts for a leverage effect, and only the GAS-skewed-t model accounts

for skewness. The GAS(1,1)-skewed-t model (with time-varying parameter given by the logarithm of the

variance log(ht)) is given by the following specification

yt = µ+
√
htεt,

εt ∼ SKT (0, 1, ν, λ),

log(ht) = ω +A

(
(ν + 1)bzt−1(bzt−1 + a)

2(ν − 2)(1 + It−1λ)2 + 2(bzt−1 + a)2
− 1

2

)
+B log(ht−1),

It−1 =

−1, zt−1 < −a/b,

1, zt−1 ≥ −a/b,

zt−1 =
yt−1 − µ√

ht−1

,

where the constants a, b and c are given by a = 4λc
(
ν−2
ν−1

)
, b2 = 1 + 3λ2 − a2 and c =

Γ( ν+1
2 )√

π(ν−2)Γ( ν2 )
.

The GAS(1,1)-t model (with time-varying parameter given by the variance ht) is given by the following

specification

yt = µ+

√
ν − 2

ν
htεt,

εt ∼ t(ν),

ht = ω +A
ν + 3

ν

 (ν + 1)(yt−1 − µ)2

ν − 2 + (yt−1−µ)2

ht−1

− ht−1

+Bht−1.

That is, in the GAS(1,1)-skewed-t and GAS(1,1)-tmodels we have parameter vectors θ = (µ, ω,A,B, ν, λ)′

and θ = (µ, ω,A,B, ν)′. We put flat priors on µ, ω, A and B, with ω > 0 in the GAS(1,1)-t model and

B ∈ (0, 1). For ν − 2 we use an uninformative yet proper exponential prior (with prior mean 100). For

the GAS(1,1)-skewed-t model we specify λ ∼ U(−1, 1).

As a benchmark and the starting point for the PCP approach, we first carry out the standard posterior
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analysis; second, we perform the estimation based on the CP. Each time we run M = 10000 iterations

(after a burn-in of 1000) of the IC-MH using as a candidate the mixture of Student’s t distributions

obtained with the MitISEM algorithm of Hoogerheide et al. (2012) For the PCP, given the posterior

draws of θ1 = {µ2, α, β} or θ1 = {A,B} of the parameters describing the dynamics (including the

parameter µ2 in the AGARCH model, which describes the leverage effect), we conditionally sample

θ2 = {µ1, ω, ν, λ}, θ2 = {µ, ω, ν, λ} or θ2 = {µ, ω, ν} from the conditional censored posterior. θ2 contains

the parameters that determine the unconditional mean and variance and the shape of the distribution

of yt, these parameters are particularly related to the left tail of the predictive distribution of yt. For

the threshold Ct we consider multiple quantiles, both the constant value given by the quantile of the

in-sample data and the time-varying quantile of the MLE-implied conditional distribution.

In our forecasting study we consider H = 2007 out-of-sample density forecasts, where we have an in-

sample period of T = 1012 observations. As our primary interest is accurate left-tail density prediction,

we compare the density forecasts based on the censored likelihood (CSL) scoring rule (2.7) of Diks et al.

(2011). A novelty of this paper is that we also allow the threshold for the assessment of the quality

of the left-tail prediction to be time-varying, which we set to the 0.5%, 1% and 5% percentile of the

MLE-implied conditional distribution. We also consider a time-constant threshold for evaluation, as in

the previous literature, which we set at the 0.5%, 1% and 5% percentile of the in-sample data.

Tables 4, 5 and 6 present the results of the Diebold-Mariano test based on the censored likelihood scoring

rule with time-constant and time-varying threshold, respectively, for the estimated AGARCH(1,1) model

with skewed-t errors, the GAS(1,1)-skewed-t model and the GAS(1,1)-t model, respectively. A positive

number indicates that the first approach provides better left-tail density forecasts (in terms of the CSL)

than the second approach.

Table 7 gives a summary of the results. For example, in the AGARCH(1,1)-skewed-t model the PCP beats

the regular posterior in 40 out of 48 cases (with 4 constant and time-varying quantiles for the estimation

of the PCP, and 3 constant and time-varying quantiles for the assessment of the quality), where the

outperformance is significant (at 5% level) in 29 cases. On the other hand, in the AGARCH(1,1)-skewed-

t model the PCP is only beaten by the regular posterior in 8 out of 48 cases, never significantly. We

observe that in each of the three models the role of partial censoring is crucial. With multiple parameters

to be estimated based on a dataset where many observations have been censored, it is harder for the fully

censored posterior to provide accurate left-tail density forecasts. With an appropriately chosen subset of

parameters to apply censoring, we can often achieve better left-tail density forecasts than with the regular

posterior or the fully censored posterior. However, we note that we expect the results to be contingent

on the data used. After all, if a model is not misspecified (or if the misspecification is negligible), then

we do not expect the (partially) censored posterior to outperform the standard posterior.

In the AGARCH(1,1)-skewed-t model the time-varying threshold (during estimation) leads to better

PCP results than its counterpart with a constant threshold (during estimation) in 22 out of 24 cases

(with 4 quantiles for the estimation of the PCP, and 3 constant and time-varying quantiles for the

assessment of the quality), where the outperformance is significant (at 5% level) in 21 cases. This

stresses the potential usefulness of making the threshold for estimation of the partially censored posterior

time-varying. However, in the GAS(1,1)-skewed-t model the better performance of the PCP with a time-

varying threshold is observed less often, and in the GAS(1,1)-t model the PCP with a constant threshold

appears to perform better. This suggests that the preference for a time-varying threshold or a constant

threshold (for the estimation of the partially censored posterior) may crucially depend on the model

specification.
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time-constant threshold time-varying threshold
for evaluation of CSL: for evaluation of CSL:

quantile quantile

0.5% 1% 5% 0.5% 1% 5%

20% PCP (const. threshold) - posterior -1.21 -0.87 1.16 -0.41 0.12 1.95
PCP (const. threshold) - CP (const. threshold) 2.47 2.32 0.11 2.07 1.50 0.20
CP (const. threshold) - posterior -1.76 -1.46 0.82 -1.08 -0.47 1.32

PCP (time-var. threshold) - posterior -0.71 -0.33 2.15 2.09 3.67 5.35
PCP (time-var. threshold) - CP (time-var. threshold) 2.56 2.43 0.52 2.56 2.43 0.52
CP (time-var. threshold) - posterior -1.78 -1.49 1.09 1.83 3.46 5.26

PCP (time-var. threshold) - PCP (const. threshold) 2.51 2.38 3.22 2.28 3.84 5.55

30% PCP (const. threshold) - posterior -0.29 0.27 3.04 0.62 1.23 4.31
PCP (const. threshold) - CP (const. threshold) 1.54 1.21 -2.12 0.49 -0.50 -1.07
CP (const. threshold) - posterior -0.69 -0.18 3.11 0.31 1.08 3.15

PCP (time-var. threshold) - posterior -0.28 0.22 2.74 2.16 3.72 5.30
PCP (time-var. threshold) - CP (time-var. threshold) 2.36 2.22 1.17 2.36 2.22 1.17
CP (time-var. threshold) - posterior -1.69 -1.34 0.69 1.97 3.58 5.15

PCP (time-var. threshold) - PCP (const. threshold) 0.35 -0.43 -3.65 2.19 3.73 5.13

40% PCP (const. threshold) - posterior 2.37 2.62 3.82 2.74 2.94 5.34
PCP (const. threshold) - CP (const. threshold) 2.30 2.20 2.06 1.86 1.78 3.07
CP (const. threshold) - posterior -1.18 -0.83 0.12 -0.27 -0.08 -0.28

PCP (time-var. threshold) - posterior 2.51 2.70 3.78 2.79 2.98 5.17
PCP (time-var. threshold) - CP (time-var. threshold) 2.33 2.20 2.17 1.92 1.86 3.30
CP (time-var. threshold) - posterior -0.50 -0.05 0.76 0.55 0.65 0.29

PCP (time-var. threshold) - PCP (const. threshold) 2.63 2.67 3.44 2.74 2.86 4.41

50% PCP (const. threshold) - posterior 0.63 -0.33 3.49 1.48 1.93 5.02
PCP (const. threshold) - CP (const. threshold) -0.21 -0.31 -3.61 -1.56 -2.48 -2.39
CP (const. threshold) - posterior 0.74 -1.49 5.22 2.22 3.22 5.35

PCP (time-var. threshold) - posterior 1.58 2.00 3.75 2.19 2.57 4.79
PCP (time-var. threshold) - CP (time-var. threshold) 1.97 1.81 -0.06 1.43 0.87 0.83
CP (time-var. threshold) - posterior -0.10 0.52 4.34 1.52 2.46 4.41

PCP (time-var. threshold) - PCP (const. threshold) 2.50 2.38 2.65 2.62 2.69 2.52

Table 4: Empirical application to daily IBM logreturns: estimated AGARCH(1,1) model of Engle and Ng (1993) with skewed-t
innovations of Hansen (1994). Results of t-statistic in the Diebold-Mariano test with loss differentials (for the H = 2007 days in
the out-of-sample period) given by the differences in censored likelihood (CSL) score function in (2.7), where the time-constant
threshold for evaluation is the 0.5%, 1% or 5% percentile of the in-sample data, and where the time-varying threshold is the
0.5%, 1% or 5% percentile of the MLE-implied conditional distribution. For estimation of the (partially) censored posterior we use
constant and time-varying thresholds given by the 20%, 30%, 40% and 50% quantiles, which are given by the percentiles of the
in-sample data and the percentiles of the MLE-implied conditional distribution, respectively. A value ≥ 1.96 (≤ −1.96) means that
the mean of the CSL is significantly larger (smaller) for the first approach than for the second approach (at 5% significance level).
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time-constant threshold time-varying threshold
for evaluation of CSL: for evaluation of CSL:

quantile quantile

0.5% 1% 5% 0.5% 1% 5%

10% PCP (const. threshold) - posterior 1.25 0.55 0.97 0.93 0.57 0.44
PCP (const. threshold) - CP (const. threshold) 1.42 1.20 2.38 2.68 3.41 3.13
CP (const. threshold) - posterior 0.51 -0.17 0.25 -0.03 -0.55 -0.57

PCP (time-var. threshold) - posterior 1.53 0.92 1.16 1.17 0.80 0.64
PCP (time-var. threshold) - CP (time-var. threshold) -0.01 -0.71 0.46 0.88 1.41 1.15
CP (time-var. threshold) - posterior 1.66 1.26 1.04 0.86 0.37 0.26

PCP (time-var. threshold) - PCP (const. threshold) 2.41 2.37 2.27 2.78 2.66 2.50

20% PCP (const. threshold) - posterior 1.99 1.58 1.79 1.92 1.57 1.35
PCP (const. threshold) - CP (const. threshold) 1.43 0.94 1.01 1.55 1.77 1.69
CP (const. threshold) - posterior 1.89 1.58 1.61 1.47 1.04 0.78

PCP (time-var. threshold) - posterior 2.02 1.65 1.84 2.01 1.65 1.44
PCP (time-var. threshold) - CP (time-var. threshold) 2.17 1.92 1.32 1.82 1.98 2.31
CP (time-var. threshold) - posterior 1.48 1.09 1.39 1.31 0.83 0.37

PCP (time-var. threshold) - PCP (const. threshold) -0.75 -0.09 -1.02 -0.57 -0.51 -0.31

30% PCP (const. threshold) - posterior 2.12 1.80 2.06 2.13 1.85 1.74
PCP (const. threshold) - CP (const. threshold) 1.71 1.22 0.66 1.37 1.20 1.03
CP (const. threshold) - posterior 2.07 1.83 2.04 1.88 1.58 1.39

PCP (time-var. threshold) - posterior 2.32 2.11 2.43 2.52 2.35 2.36
PCP (time-var. threshold) - CP (time-var. threshold) 1.06 1.04 -1.15 -0.13 -0.71 -0.50
CP (time-var. threshold) - posterior 2.28 2.06 2.70 2.65 2.57 2.44

PCP (time-var. threshold) - PCP (const. threshold) 1.74 2.51 -0.07 0.58 0.84 0.50

40% PCP (const. threshold) - posterior 2.34 2.13 2.45 2.52 2.36 2.39
PCP (const. threshold) - CP (const. threshold) 0.29 0.39 -1.65 -0.85 -1.37 -0.85
CP (const. threshold) - posterior 2.26 2.03 2.76 2.68 2.65 2.48

PCP (time-var. threshold) - posterior 2.36 2.20 2.66 2.65 2.61 2.76
PCP (time-var. threshold) - CP (time-var. threshold) -0.54 -0.24 -1.71 -1.34 -1.40 -0.62
CP (time-var. threshold) - posterior 2.33 2.13 2.81 2.70 2.67 2.55

PCP (time-var. threshold) - PCP (const. threshold) -0.86 -0.29 0.16 -0.13 0.63 0.80

Table 5: Empirical application to daily IBM logreturns: estimated GAS(1,1) model with skewed-t innovations. Results of t-
statistic in the Diebold-Mariano test with loss differentials (for the H = 2007 days in the out-of-sample period) given by the
differences in censored likelihood (CSL) score function in (2.7), where the time-constant threshold for evaluation is the 0.5%, 1%
or 5% percentile of the in-sample data, and where the time-varying threshold is the 0.5%, 1% or 5% percentile of the MLE-implied
conditional distribution. For estimation of the (partially) censored posterior we use constant and time-varying thresholds given
by the 10%, 20%, 30% and 40% quantiles, which are given by the percentiles of the in-sample data and the percentiles of the
MLE-implied conditional distribution, respectively. A value ≥ 1.96 (≤ −1.96) means that the mean of the CSL is significantly
larger (smaller) for the first approach than for the second approach (at 5% significance level).
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time-constant threshold time-varying threshold
for evaluation of CSL: for evaluation of CSL:

quantile quantile

0.5% 1% 5% 0.5% 1% 5%

40% PCP (const. threshold) - posterior 2.48 2.46 2.76 3.06 2.57 2.84
PCP (const. threshold) - CP (const. threshold) 1.71 1.69 -0.86 1.06 0.04 -0.56
CP (const. threshold) - posterior 2.18 2.29 3.05 3.14 2.71 2.78

PCP (time-var. threshold) - posterior 1.84 1.59 -0.83 0.57 0.13 -3.94
PCP (time-var. threshold) - CP (time-var. threshold) 2.66 2.24 3.35 3.25 3.00 5.93
CP (time-var. threshold) - posterior 1.64 1.42 -2.06 -0.14 -0.70 -5.09

PCP (time-var. threshold) - PCP (const. threshold) 1.40 1.11 -2.25 -0.85 -1.10 -4.64

50% PCP (const. threshold) - posterior 2.65 2.47 3.05 3.12 2.46 3.42
PCP (const. threshold) - CP (const. threshold) 1.65 1.60 -0.48 1.16 0.28 0.29
CP (const. threshold) - posterior 2.39 2.21 3.04 3.08 2.39 2.92

PCP (time-var. threshold) - posterior 2.55 2.42 2.30 2.74 2.71 1.19
PCP (time-var. threshold) - CP (time-var. threshold) 0.49 0.54 -1.60 -0.27 -0.94 -0.71
CP (time-var. threshold) - posterior 2.40 2.26 2.67 2.67 2.84 1.38

PCP (time-var. threshold) - PCP (const. threshold) 1.88 1.86 -1.02 -0.42 0.23 -2.09

Table 6: Empirical application to daily IBM logreturns: estimated GAS(1,1) model with Student’s t innovations of Creal et al.
(2013). Results of t-statistic in the Diebold-Mariano test with loss differentials (for the H = 2007 days in the out-of-sample period)
given by the differences in censored likelihood (CSL) score function in (2.7), where the time-constant threshold for evaluation is
the 0.5%, 1% or 5% percentile of the in-sample data, and where the time-varying threshold is the 0.5%, 1% or 5% percentile of
the MLE-implied conditional distribution. For estimation of the (partially) censored posterior we use constant and time-varying
thresholds given by the 40% and 50% quantiles, which are given by the percentiles of the in-sample data and the percentiles of
the MLE-implied conditional distribution, respectively. A value ≥ 1.96 (≤ −1.96) means that the mean of the CSL is significantly
larger (smaller) for the first approach than for the second approach (at 5% significance level).

AGARCH(1,1)-skewed-t GAS(1,1)-skewed-t GAS(1,1)-t

PCP - posterior 40 - 8 [29 - 0] 48 - 0 [24 - 0] 22 - 2 [17 - 1]
PCP - CP 38 - 10 [20 - 4] 32 - 16 [ 7 - 0] 40 - 8 [ 6 - 0]
CP - posterior 29 - 19 [14 - 0] 44 - 4 [20 - 0] 20 - 4 [17 - 2]

PCP - PCP 22 - 2 [21 - 1] 14 - 10 [ 7 - 0] 5 - 7 [ 0 - 3]
(time-var.) (const.)

Table 7: Number of cases in which the PCP, CP or posterior outperforms the other approach [or significantly outperforms at 5%
significance level] out of 48 cases (with 4 constant and time-varying quantiles for the estimation of the PCP and CP, and 3 constant
and time-varying quantiles for the assessment of the quality) for the AGARCH(1,1)-skewed-t and GAS(1,1)-skewed-t models, or
out of 24 cases (with 2 constant and time-varying quantiles for the estimation of the PCP and CP, and 3 constant and time-varying
quantiles for the assessment of the quality) for the GAS(1,1)-t model. And number of cases in which the PCP with time-varying
threshold outperforms the PCP with constant threshold or vice versa [or significantly outperforms at 5% significance level].
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5 Conclusions

We have proposed a novel approach to inference for a specific region of interest of the predictive distribu-

tion. Our Partially Censored Posterior method falls outside the framework of regular Bayesian statistics

as we do not work with the regular likelihood but with the censored likelihood based on the censored

likelihood scoring rule of Diks et al. (2011). This allows us to keep the merits of the regular Bayesian

analysis, e.g. taking into account parameter uncertainty, and at the same time to allow for robust in-

ference focused on the left tail in cases of potential model misspecification. The latter is vital for risk

management, where the shape of the left tail of the conditional distribution is of crucial importance.

Partitioning of the parameter set into two subsets, one of which is likely to benefit from censoring,

increases the precision of the parameter estimates compared to the fully censored posterior of Gatarek

et al. (2013) and allows us to obtain better left-tail density forecasts. Further, we have introduced two

novel simulation methods, the MCMC method of Conditional MitISEM and the importance sampling

method of PCP-QERMit. Finally, we have considered novel ways of time-varying censoring, which allow

us for an even better focus on the left tail of the distribution of the standardized innovations. We have

demonstrated the usefulness of our methods in extensive simulation and empirical studies.

To further exploit the power of our quasi-Bayesian framework, in future research we intend to employ

the PCP in the context of forecast combination via Model Averaging using partially censored predictive

likelihoods, or in a (quasi-)Bayesian framework with time-varying weights for pairs of models and esti-

mation methods (and possibly investment strategies), extending Bastürk et al. (2019). Also extensions

of the classical approach of Opschoor et al. (2016) based on so-called pooling are relevant in this regard.

Another interesting extension will be to investigate the impact of using the smoothly-censored likelihood

of Diks et al. (2011) in our PCP setting, to make the PCP approach even more robust w.r.t. the choice

of the threshold Ct. An important domain of application of the proposed PCP methodology would be

portfolio optimization and portfolio risk management, where the evaluation of the probability of yt lying

outside the region of interest (P(yt ∈ ACt |y1:t−1, θ)) may require an efficient simulation method. An

interesting extension would be the analysis of credit risk and defaults.

There are multiple possible applications beyond the field of financial econometrics. Risk estimation is of

interest in many areas, not only in finance. For example, statistical models for weather forecasting and

climatology. But also in financial econometrics quite different applications can be considered, such as in

electricity markets where one may be particularly interested in the right tail of the distribution of energy

prices.

Finally, models with latent variables (such as regime switching models and stochastic volatility models)

and models with a realized variance measure would be interesting extensions. However, optimal simula-

tion methods for such models would require an adaptation of the simulation methods presented in this

article. We will consider such simulation methods in future research.
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A Advantages and disadvantages of the censored posterior: a

simulation study with i.i.d. data

To illustrate the advantages and disadvantages of estimation based on the censored posterior, we perform

a simple simulation study in which we consider three data generating processes (DGPs), where we assume

a split normal distribution, a skewed-t distribution or a mixture of two normal distributions for i.i.d. yt.

The density of the split normal distribution SN (δ, τ2
1 , τ

2
2 ), analysed by e.g. Geweke (1989) and De Roon

and Karehnke (2016), is given by

p(yt) =

φ(yt; δ, τ
2
1 ), yt > δ,

φ(yt; δ, τ
2
2 ), yt ≤ δ,

where φ(x;m, s) denotes the Gaussian density with mean m and variance s evaluated at x. The mean

of a random variable distributed according to SN (0, τ2
1 , τ

2
2 ), i.e. with a split at zero, is equal to − τ2−τ1√

2π
,

which is non-zero for any asymmetric case. The variance is equal to κ = 1
2

((
τ2
1 + τ2

2

)
− (τ2−τ1)2

π

)
. Hence,

shifting of the split point accordingly to the chosen parameters τ2
1 and τ2

2 allows us to consider a zero-

mean random variable: yt ∼ SN (δ, τ2
1 , τ

2
2 ) with δ := τ2−τ1√

2π
results in E[yt] = 0. The reason behind the

use of the split normal distribution is to be able to obtain one correctly specified tail, when we estimate

a model with a normal distribution N (µ, σ2).

We consider two cases of the true parameters of the DGP: a symmetric case with τ1 = 1 and τ2 = 1; and

an asymmetric case with τ1 = 1 and τ2 = 2. In that latter case we set δ = 1√
2π

to impose E[yt] = 0. For

both cases we generate T = 100, T = 1000 and T = 10000 observations from the true model. We are

interested in evaluating the 95% and 99% VaR, i.e. in the estimation of the 5% and 1% quantiles of the

distribution of yt. For the symmetric case the true values for these quantities are −1.6449 and −2.3263,

while for the asymmetric case −2.8908 and −4.2538.

For each case we estimate an i.i.d. normal N (µ, σ2) model with unknown mean µ and variance σ2. We

specify the usual non-informative prior p(µ, σ) ∝ 1
σ (for σ > 0). We perform an estimation based on the

uncensored posterior and two specifications for the censored posterior. In each the threshold value C is

constant over time, At = {yt : yt ≤ C}, where we consider two different values for the threshold C: one

equal to the 10% quantile of the generated sample (CP10%) and another one equal to zero (CP0). In

both cases all the uncensored observations stem from the left half of the distribution. In other words:

• for the regular posterior, all uncensored data are used;

• for CP0 all generated negative values are used, and all (generated) positive values contribute to the

censored posterior via the probability that they are positive;

• for CP10% all values below the 10% quantile of the simulated dataset are used and all other values

contribute to the censored posterior via the probability that they are larger than the quantile.

All the simulations are carried out with M = 10000 posterior draws after a burn-in of 1000 using an

independence chain Metropolis-Hastings (IC-MH) algorithm with target density kernel (2.5) where the

candidate density is a single Student’s t distribution.

Tables 8a and 8b report simulation results for Monte Carlo (MC) experiments of 100 simulated datasets

for the symmetric and asymmetric case, respectively. Figures A.1 and A.2 present kernel density estimates

of the 99.5%, 99% and 95% VaR for a single simulation for T = 100, 1000, 10000 for the symmetric and

asymmetric case, respectively. For example, for the 95% VaR the (censored) posterior density of µ−1.645σ
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Value True Posterior CP10% CP0

T = 100

99% VaR -2.3263 -2.1245 -2.2322 -2.1519

[0.5763] [0.6812] [0.6041]

95% VaR -1.6449 -1.4899 -1.4668 -1.4951

[0.2922] [0.3123] [0.2986]

T = 1000

99% VaR -2.3263 -2.0998 -2.1020 -2.1074

[0.5464] [0.5500] [0.5476]

95% VaR -1.6449 -1.4816 -1.4823 -1.4858

[0.2725] [0.2734] [0.2735]

T = 10000

99% VaR -2.3263 -2.0965 -2.0876 -2.0972

[0.5427] [0.5432] [0.5428]

95%VaR -1.6449 -1.4802 -1.4767 -1.4815

[0.2712] [0.2713] [0.2713]

(a) Symmetric (correctly specified) case: τ2 = 1.

Value True Posterior CP10% CP0

T = 100

99% VaR -4.2538 -3.6551 -4.5968 -4.4697

[0.5082] [0.6438] [0.3506]

95% VaR -2.8908 -2.5675 -2.8886 -2.9773

[0.1984] [0.2612] [0.1402]

T = 1000

99% VaR -4.2538 -3.5549 -4.2739 -4.2701

[0.5063] [0.0527] [0.0293]

95% VaR -2.8908 -2.5101 -2.8895 -2.8882

[0.1540] [0.0158] [0.0145]

T = 10000

99% VaR -4.2538 -3.5654 -4.2610 -4.2583

[0.4787] [0.0098] [0.0091]

95% VaR -2.8908 -2.5226 -2.8919 -2.8917

[0.1369] [0.0031] [0.0029]

(b) Asymmetric (misspecified) case: τ2 = 2.

Table 8: Estimation results in i.i.d. normal N (µ, σ2) model for data from DGP of (a) i.i.d. yt ∼ SN (δ = 0, τ1 = 1, τ2 = 1) (which
is equivalent with the standard normal distribution N (µ = 0, σ = 1)) and (b) i.i.d. split normal yt ∼ SN (δ = 1√

2π
, τ1 = 1, τ2 = 2).

Simulation results for the regular posterior and for the censored posterior with threshold at 0 (CP0) and threshold at the 10% data
percentile (CP10%). MSEs across 100 simulated datasets in brackets, with the best MSE in boldface.

is shown. Note that the true values of the 99.5%, 99% and 95% VaR are the 0.5%, 1% and 5% percentiles

of the N (δ, τ2
2 ) distribution. In the misspecified case the regular posterior provides incorrect estimates

from the left tail perspective, because the estimated model aims to approximate the distribution over

the whole domain. The CP provides parameter estimates with a much better location (regarding the left

tail of the predictive distribution) by focusing on the relevant region. The cost of a better location is,

however, a larger variance of the estimates due to the loss of information caused by censoring. Obviously,

the precision of the estimates from the CP depends on the degree of censoring: the more censoring, the

less information, the lower the precision. In the symmetric case we can see that, as expected, the only

cost of censoring is a higher variance, but the locations of the regular posterior and the CP are similar.

In this specific case of the split normal distribution, where the left tail is perfectly described by the left

tail of a normal distribution, the optimal threshold seems to be the one where we leave all observations

from the left half uncensored, whereas we censor all observations from the right half. That is, a threshold

equal to the value δ where the density ‘jumps’ between the left and right halves. The threshold 0 leads to

better results than the threshold of the 10% quantile, since the 10% quantile lies further from the optimal

threshold. We observe that for the larger datasets (T = 1000 and T = 10000) the VaR from the regular

posterior is only slightly better (in the sense of a slightly smaller MSE) in the case of no misspecification

(with a normal DGP), whereas in the case of misspecification (with a split normal DGP) the censored

posterior leads to much more accurate VaR estimates. However, in case of a small dataset (T = 100)

the VaR is substantially better for the regular posterior than for the censored posterior where the loss

in precision due to censoring has a severe effect. We introduce the Partially Censored Posterior (PCP)

exactly for the reason of limiting this harmful effect of loss of information due to censoring.
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(a) T = 100

(b) T = 1000

(c) T = 10000

Figure A.1: Estimation results in i.i.d. normal N (µ, σ2) model for T = 100, 1000, 10000 observations from DGP of i.i.d. split
normal SN (δ = 0, τ1 = 1, τ2 = 1) (which is equivalent with the standard normal distribution N (µ = 0, σ = 1)). Kernel density
estimates of 99.5%, 99% and 95% VaRs obtained using regular posterior and censored posterior (CP) with threshold at 0 (CP0)
and with threshold at the 10% data percentile (CP10%) together with the true VaR values. For example, for the 95% VaR the
(censored) posterior density of µ− 1.645σ is shown.
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(a) T = 100

(b) T = 1000

(c) T = 10000

Figure A.2: Estimation results in i.i.d. normal N (µ, σ2) model for T = 100, 1000, 10000 observations from DGP of i.i.d. split
normal SN (δ = 1√

2π
, τ1 = 1, τ2 = 2). Kernel density estimates of 99.5%, 99% and 95% VaRs obtained using regular posterior and

censored posterior (CP) with threshold at 0 (CP0) and with threshold at the 10% data percentile (CP10%) together with the true
VaR values. For example, for the 95% VaR the (censored) posterior density of µ− 1.645σ is shown.
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The discontinuous nature of the split normal density makes it very artificial for finance applications. A

continuous density would better fit with standard modelling practices for return data. For this reason

and to check the robustness of our results in case of different distributions where the estimated normal

distributions will never be able to provide a perfect description of the left tail, we also consider simulated

datasets from a mixture of normals and from a skewed-t distribution.

We consider the mixture of normals that is used by Auśın and Galeano (2007) for the standardized

innovations in their Gaussian Mixture GARCH (1,1) model:

yt ∼

{
N (0, σ2) with probability ρ,

N (0, σ2/λ) with probability 1− ρ,
(A.1)

where σ2 = 1
ρ+(1−ρ)/λ so that var(yt) = 1, and where 0 < λ < 1. The inverse 1

λ indicates how much

the variance in the ‘wild’ regime is amplified, where we consider multiple values of λ. The closer λ is

to 0, the larger the kurtosis, and the larger the misspecification in the estimated model with the normal

distribution. ρ is the probability of the ‘calm’ regime, which we set at 0.75.

For each value of λ and for each number of observations T (T = 100, 1000, or 10000) we simulate

100 datasets and use the different methods to estimate the 99.5%, 99% and 95% VaR. We perform the

Diebold-Mariano test with loss differentials given by the 100 differences in absolute errors of the estimated

VaR. Table 9 gives the results. We conclude the following. First, we obtain better results for censoring

(as compared to the regular posterior) if we move from T = 100 to T = 1000 and T = 10000. If we have

few observations, then the loss of information due to the censoring does more harm than when we have

many observations. Second, censoring becomes more beneficial if the distribution of the DGP becomes

“further” from the estimated normal distribution (with λ further from 1 and closer to 0). Third, for

the 99.5% and 99% VaR CP10% performs better than CP0 (for T large enough and λ small enough),

whereas for the 95% VaR CP0 performs better than CP10%. Using the 10% quantile as the threshold

means that we have a more precise focus on the left tail, whereas with threshold 0 we have a broader

focus on approximately the left half of the distribution. Fourth, for the 99.5% and 99% VaR censoring is

more beneficial than for the 95% VaR. The 5% quantile is not far in the tail. However, for small values

of λ (where the deviations from normality are substantial) the CP0 with large enough sample size T can

still provide a more accurate 95% VaR than the regular posterior. The reason for this is that we estimate

both µ and σ2 of the normal distribution N (µ, σ2). If we use CP0, then we only need to aim at fitting

the shape of approximately the left half of the distribution, which is easier than aiming at the shape of

the whole distribution. Note: if µ = 0 would be fixed in the estimated distribution, then it would not

matter that we only need to aim at the left half of the distribution, since both tails have the same shape.

The DGP is a symmetric distribution. But with µ free we can use µ 6= 0 to approximate the shape of

the left half of the distribution better. A normal distribution with µ > 0 and σ larger than the actual

standard deviation can provide an approximation to a fat left tail. Censoring can also be useful when

estimating a symmetric distribution if the DGP is a different symmetric distribution.

In the general case of misspecification the left tail is not perfectly described by the estimated model.

Then there is typically a clear trade-off between the variance and the bias: the less censoring (that is,

the less negative the threshold), the smaller the variance, but the larger the bias.

We also consider the skewed-t distribution of Hansen (1994): SKT (0, 1, ν, λ) with zero mean, unit vari-

ance, ν degrees of freedom and skewness parameter λ, where λ > 0, λ = 0 and λ < 0 imply right-skewed,

symmetric (Student’s t) and left-skewed distributions, respectively. We take ν = 5 to allow for the fat

tails that are typical for data on financial returns and we consider multiple values of λ. Table 10 gives the

results. From these we can draw similar conclusions as for the mixture of normal distributions. Note that
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for λ = 0 the DGP is a Student’s t distribution, which is obviously different from the normal distribution

that is estimated. Therefore also for λ = 0 censoring can help.

In order to analyse the effect of the threshold on the performance of the censored posterior we consider

results for the skewed-t distribution for multiple thresholds C. Table 11 shows that the best threshold

for estimating the censored posterior depends on the quantile that we are interested in. The deeper part

of the tail we are interested in, the deeper in the tail lies the optimal threshold for censoring. For the

99.5% VaR the 5% quantile is typically the best of the considered thresholds, whereas for the 95% VaR

the 20% quantile performs the best among the considered thresholds.

In practice one can perform a sensitivity analysis, where one compares the quality of forecasts using

different threshold values for a hold-out sample of out-of-sample observations.
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B Conditional density of (mixture of) multivariate Student’s t

distributions

Student’s t distribution Let x ∈ Rd follow the Student’s t distribution with mode µ, scale matrix Σ

and ν degrees of freedom, denoted t(x;µ,Σ, ν), where we assume ν > 2 so that var(x) = ν
ν−2Σ. Then,

the probability density function (pdf) of x is given by (cf. Zellner, 1996; Roth, 2013)

p(x) =
Γ
(
ν+d

2

)
Γ
(
d
2

)
(πν)

d
2

|Σ|− 1
2

(
1 +

(x− µ)′Σ−1(x− µ)

ν

)− d+ν2
.

Next, consider a partitioning of x into x = (x′1, x
′
2)′ with x1 and x2 of dimensions d1 and d2, respectively.

The corresponding parameter partitionings are then

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Then, the conditional density of x2 given x1 is also a Student’s t density, which is given by

p(x2|x1) =
p(x1, x2)

p(x1)
= t(x2;µ2|1,Σ2|1, ν2|1),

with

µ2|1 = µ2 + Σ21Σ−1
11 (x1 − µ1),

Σ2|1 =
ν + (x1 − µ1)′Σ−1

11 (x1 − µ1)

ν + d1

(
Σ22 − Σ21Σ−1

11 Σ12

)
,

ν2|1 = ν + d1.

Mixture of Student’s t distributions The above result extends to mixtures of Student’s t distri-

butions. Now let x follow an H component mixture of Student’s t distributions t(x;µh,Σh, νh), with

component probabilities ηh, h = 1, . . . ,H, so that its pdf is given by

p(x) =

H∑
h=1

ηht(x;µh,Σh, νh).

Let z denote a (latent) H-dimensional vector indicating from which component the observation x stems:

if x stems from the hth component then z = eh, the hth vector of the standard basis of RH , i.e. zh = 1

and zl = 0 for l 6= h. Obviously, unconditionally P[z = eh] = ηh. The conditional probability of x

stemming from the hth component is

P[z = eh|x] =
p(z = eh, x)

p(x)

=
P[z = eh]p(x|z = eh)∑H

m=1 P[z = em]p(x|z = em)

=
ηht(x;µh,Σh, νh)∑H

m=1 ηmt(x;µm,Σm, νm)
.
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Then, the conditional density of x2 given x1 is given by

p(x2|x1) =
p(x1, x2)

p(x1)
=

∑H
h=1 ηht(x;µh,Σh, νh)∑H

h=1 ηht(x1;µh,1,Σh,1, νh)
=

H∑
h=1

ηh,2|1t(x2;µh,2|1,Σh,2|1, νh,2|1),

with

µh,2|1 = µh,2 + Σh,21Σ−1
h,11(x1 − µh,1),

Σh,2|1 =
νh + (x1 − µh,1)′Σ−1

h,11(x1 − µh,1)

νh + d1

(
Σh,22 − Σh,21Σ−1

h,11Σh,12

)
,

νh,2|1 = νh + d1,

and with adjusted component probabilities

ηh,2|1 = P[z = eh|x1] =
ηht(x1;µh,1,Σh,11, νh)∑H

m=1 ηmt(x1;µm,1,Σm,11, νm)
.

This implies that if we have obtained qmit(θ1, θ2), a mixture of Student’s t densities that approximates

the joint censored posterior pcp(θ1, θ2|y), then we can use the M implied conditional mixtures of Student’s

t densities qcmit(θ2|θ1 = θ
(i)
1 ) (i = 1, . . . ,M) as candidate densities for the conditional censored posterior

densities pcp(θ2|θ(i)
1 , y) (i = 1, . . . ,M). Hence, we only need one MitISEM approximation to obtain all

the conditional candidate densities in our proposed Conditional MitISEM method.
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